

Introduction

- Scaffold is a fundamental concept in medicinal chemistry
- Scaffold-based analyses are an integral part of early stage discovery
 - » Lead identification from high throughput screening (HTS) campaigns
 - » Lead optimization
 - » Lead "instrumentation," i.e., addressing early stage liabilities such as IP and ADME/Tox.
- No freely available tools that meet our needs

Outline

- Overview
- Features of Scaffold Hopper
- A quick tour of Scaffold Hopper
- Future directions

Overview

- Scaffold Hopper is a freely available tool that was initially developed in-house for automated R-group analysis
- Self-contained Java webstart application running inside the Java's secure sandbox
 - » Require explicit user's permissions for basic operations (e.g., file IO)
 - » Does not transmit user's structures over the network; communication with the server only over SSL.
 - » Heavy-lifting (e.g., computing MCS) is on the client side
- Look out for additional details on our blog <u>http://tripod.nih.gov</u>
- Or take it out for a spin now <u>https://tripod.nih.gov/ws/hopper/hopper.jnlp</u>

Software features

- Automatically generate "reasonable" R-group tables for a given dataset
- Scaffold-based "clustering" of the data
- "Bird's eye" view of the data through scaffold network visualization
- Scaffold "hopping" (in the literal sense) in the context of publications (and soon targets and assays)
- PubMed on "steroid"
 - » Import data directly from PubMed ID or DOI
 - Structure searching (sub-, super-, exact, and similarity) against PubMed
 - » Retrieve structures from PubMed's text searches

Examples of scaffolds generated directly from Scaffold Hopper

A quick tour of Scaffold Hopper

Quick tour (cont'd)

Quick tour (cont'd)

Future directions

- Integration with BARD
- Incorporate additional contexts; e.g., targets, assays, clinical trials, drugs, patents, etc.
- Explore interesting use cases, e.g.,
 - » Given a set of hits from a phenotypic screen, can we identify likely targets and/or pathways?

Acknowledgements

- Deepak Bandyopadhyay (GSK)
- Min Shen (NCGC)